Daftar Isi:

MyPhotometrics: Photodiodenverstärker Pro-Version: 6 Langkah (dengan Gambar)
MyPhotometrics: Photodiodenverstärker Pro-Version: 6 Langkah (dengan Gambar)

Video: MyPhotometrics: Photodiodenverstärker Pro-Version: 6 Langkah (dengan Gambar)

Video: MyPhotometrics: Photodiodenverstärker Pro-Version: 6 Langkah (dengan Gambar)
Video: Proses pasang Ring Jantung atau Cincin Jantung #cardio #cardiology #ringjantung 2024, November
Anonim
MyPhotometrics: Photodiodenverstrker Pro-Version
MyPhotometrics: Photodiodenverstrker Pro-Version

Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 Internasional. Eine für Menschen lesbare Zusammenfassung dieser Lizenz findet sich hier.

Apakah itu Sauron Plus?

Sauron Plus ist die Pro-Version des 4-Kanal Photodiodenverstärkers Sauron, der mithilfe von geeigneten Photodioden die Strahlungsleistung einer Lichtquelle erfassen kann. Sein Eingangsstrombereich von 20 nA- 5120 nA reichte allerdings nur für Lichtquellen geringer Intensitäten aus. Für die Messung von Lasern war es deshalb notwendig eine spezielle Sphäre aus LEGO zu verwenden, die die Intensität abschwächte und damit eine bersättigung des Messinstruments verhinderte. Für professionalelle Zwecke ist diese Lösung nicht optimal.

Die Pro-Version Sauron Plus liefert eine etwa 1000-fache Erhöhung des Eingangstrombereichs mit bis zu 50mA. Diese Version Sieht den Anschluss von nur einer Diode vor, jedoch ist eine Messkanalerweiterung mit dem MyPhotometrics Photo-Rack realisierbar. Mit Sauron Plus ist es ebenfalls möglich seine Vorgängerversion zu nutzen.

Highlight:

  • Eingangsstrombereich 20 nA – 50mA ·
  • Auflosung 10-20 Bit
  • Integrasizeit 1 - 1024 ms

Anwendungen:

  • Kontroller berkualitas
  • pengujian komponen
  • Tes Lebensdauer
  • Fotometer
  • Pengukur daya

Die Messung der Strahlungsintensität erfolgt weiterhin über eine Photodiode, die einfallendes Licht in einen messbaren Strom umwandelt. Die weitere Verarbeitung dieses Stromsignals ermöglichen mehrere Bausteine, die zusammen ein oszillatorisches Messverfahren erlauben, das einen deutlich höheren Eingangsstrombereich liefert. Durch die spezielle Verschaltung eines Kondensator, oszilliert die über ihn abfallende Spannung di einer Frequenz, die je nach Eingangsstrom variiert. Konverter Tegangan ke Frekuensi Ein wandelt die resultierenden Spannungsspitzen zu einem Sinyal mit bestimmter Frequenz um. Diese Frequenz kann von dem Mikrokontroler erfasst werden werden. Je höher die aufgenommene Frequenz ist, desto höher ist auch der Eingangsstrom, und somit auch die gemessene Lichtintensität.

Instructable zeigen wir die Herstellung der Hardware und die Anbindung an einen geeigneten Mikrokontroler. Buka kembali Firmware für einen (cepat) beliebigen Arduino (Pinbelegung beachten) dan ein Beispiel-LabVIEW™-Program als Nutzeroberfläche. Hiermit steht dem Einsatz von Sauron PLUS im Buruh nichts mehr im Weg.

Mari kita mulai…

Langkah 1: Aufbau Und Funktion Des Boards

Aufbau Und Funktion Des Boards
Aufbau Und Funktion Des Boards

Die goldfarbene Buchse(1), welche an der Platinenkante terbaik, dient als Anschluss einer Photodiode mittels Koaxialkabel. Folgend dient ein Relay (2) dazu zwischen den Varianten Sauron (Pendidikan) und der Pro-Variante Sauron Plus zu wählen. Mithilfe des hier verwendeten Arduino Nano (3) adalah yang pertama Schalter ansteuerbar. Der Aufbau der Education Version ist bereits in dem Instructable erklärt und befindet sich in dem grün markierten Bereich.

Für die Verwendung von Photodioden mit Signalstärken von mehreren mA ist es notwendig das Signal der Diode noch vor der eigentlichen Messung zu dämpfen. Dazu dient der Transimpedanzverstärker (TIA)(4). Er schwächt das Messsignal mithilfe einer Widerstandskaskade(5) insoweit ab, dass an seinem Ausgang maximal 100uA fließen. Die Ansteuerung des TIA (und damit auch die Wahl des Messbereichs) erfolgt wiederum durch den Arduino und einen CMOS Multiplexer (6).

Sauron Plus misst die Strahlungsintensität mithilfe eines oszillatorischen Messverfahrens. Dazu dient der VFC (Konverter Tegangan ke Frekuensi, zu deutsch auch U/f- Wandler)(7). Als Referenzspannung dient die Spannungsquelle (8), die man als schwarzen Blok auf der Platine erkennen kann. Sie liefert 15V die durch einen 1:1 Spannungsteiler auf die Hälfte abgesenkt werden. Die resultierenden 7, 5V dienen im folgenden Verlauf der Signalverarbeitung als„Triggerpunkt“eines Komparator der Bestandteil des VFC ist. Die Spannung liegt am Threshold“-Eingang an. Der Komparator vergleicht diese mit der Spannung, die am Comp_Input“-Eingang anliegt.

(Hinweis: Wo genau sich diese Eingänge befinden, lässt sich im SauronPlus.sch nachvollziehen.)

Sobald eine höhere Spannung als 7, 5V anliegt, schaltet der VFC einen konstanten Strom, der Kondensator C5 (9) auflädt. Zusammen mit einem Operationsverstärker (10) bildet C5 einen Integrator. Fließt jetzt Strom aus dem TIA, wechselt die Eingangsspannung des Integrators die Polarität und der Kondensator entlädt sich. Die Ausgangsspannung, welche gleichermaßen der “Comp_Input“des VFC ist, sinkt. Sobald sie unter den Triggerpunkt fällt, schaltet der VFC den Ausgangsstrom ab. Durch diesen Vorgang oszilliert die Spannung, sodass Ladungsspitzen erkennbar sind. Diese lassen sich mit dem Arduino Nano zählen. Masukan Maksimal (Rentang Penuh) dari -10V am Eingang des Integrators dari VFC eine Frequenz von 100kHz. Informasi lebih lanjut Stromstärke das Entladen des Kondensators beschleunigt wird, spiegelt sich die Stromstärke in der resultierenden Frequenz wieder.

Einige der übrigen Bauteile dienen zur Verbesserung des Messignals, wie beispielsweise Pi-Filter (11) zum Glätten der Referenzspannung und Potensiometer (12) zum Entfernen von Offsets, resultierend durch Kriechströme. Außerdem befinden sich mehrere Schutzvorrichtungen auf der Platine, wie beispielsweise Dioden (13), die vor zu hohen Strömen schützen. Desweiteren liefert ein Step-Down Converter (14) aus der Spannungsquelle von 15V die vom Arduino Benötigte Versorgungsspannung von 5V dan ein IO-Expander (15) oleh Arduino tidak lebih dari IO-Pins zur Ansteuerung der zahlreichen Bauteile.

Hinweis: Diese Funktionsbeschreibung ist grob zusammengefasst, da die Beschreibung der komplexeren Funktionen den Umfang dies Instructables überschreiten würde. Wer sich tiefgehender über die Signalverarbeitung mittels VFC beschäftigen möchte, kann folgende Seiten besuchen:

  • U/f_Wandler
  • Datenblatt LM331AN

Langkah 2: Benötigte Bauteile, Platine Und Zubehör

Benötigte Bauteile, Platine Und Zubehör
Benötigte Bauteile, Platine Und Zubehör
Benötigte Bauteile, Platine Und Zubehör
Benötigte Bauteile, Platine Und Zubehör

Zunächst werden einige Bauteile benötigt, die großteils bei dem Anbieter Farnell erhältlich sind. Für das Hochladen des bereitgestellten Warenkorbs ist eine Pendaftaran auf der Seite www.farnell.de notwendig. Jetzt muss die Datei BOMPLUS.xlsx heruntergeladen und unter "Meine Bestellungen" - "Stückliste hochladen" ausgewählt werden. Der Warenkorb wird automatisch zusammengestellt.

Der Warenkorb enthält die exakten Bauteilmengen, die für Sauron Plus notwendig sind. Wir empfehlen jedoch die Stückzahl einiger Komponenten zu erhöhen. Dies gilt besonders bei Teilen, die bei der Verarbeitung schnell verloren gehen können (Widerstände, Kondensatoren).

Unter OSH Park ist die Bestellung der Platine mit dem Button Pesan sekarang möglich. Alternatif einfach das Sauron+.brd file runterladen und bei einem beliebigen anderen PCB-Fertiger di Auftrag geben.

(Hinweis: Diese Platine kann auch für das Laserleistungsmessgerät als Stand-Alone-Lösung genutzt werden, da die Anschlüsse für das Display und den Joystick bereits vorhanden sind.)

Weitere notwendige Bauteile sind:

  • Der AS89010 Der Firma asm Sensor Jerman wird bislang direkt vom Hersteller geoordert. Der Verkaufspreis (Stand Mai 2017) di bawah 6, 97€ je Einheit. Aufgrund firmeninterner Umstellungen gibt es den AS89010 allerdings schon bald bei arrow.com oder futureelectronics.com.
  • 2x dari Arduino Nano (Nano Atmega 328P) z. B. hier für weniger als 5€ (Dan nicht alle Pins notwendig sind, sollte das Board keine verlöteten Steckerleisten besitzen.)

(Hinweis: Es kann bei Bedarf auch ein Arduino Nano für das Board verwendet, und ein anderer Controller für die Messdatenaufnahme eingesetzt werden. Dafür kann ein fast beliebiger Arduino verwendet werden. Nutzer überlassen. Bei der Erstellung dieses Projekts wurde jedoch auch hier ein Arduino Nano ausgewählt.)

  • Die SMA- Buchse, die Stiftleisten (4x) dan ein übriger Widerstand (1x)z. B bei mouser.de
  • Koaksialkabel RG174 zB. bei voelkner.de
  • brige Kleinteile: 3, 3uF Kondensator (4x), das Relay dan eine 100uH Spule (2x) z. B. bei digikey.de

(Hinweis: Sicher gäbe es einige Bauteile, die hier extra aufgeführt sind, auch bei farnell.com. Allerdings sind die Bauteile so gewählt, dass sich der Aufwand bei unterschiedlichen Distributoren zu bestellen Preis-Leistungs-dern möglicherweise nicht beachtet wird, ist hier die Abweichung eines Bauteils vom angegebenen Messwert in Prozent. Dies ist ein Qualitätsmerkmal, berada di manchen Bereichen der Schaltung von Sauron Plus nicht zu umgehen ist.)

Prinzipiell tidak jegliche Art einer Photodiode mit dem Messsystem kompatibel. Wir empfehlen die Nutzung von Dioden der Typen

  • Pesanan BPX61
  • OSD-50-5T

Die BPX61 ist die kostengünstige Lösung, die für einfache Anwendungen und Versuche ausreicht.

Der zweite ausgewählte Dioden Jenis, die OSD-50-5T, zeichnet sich nicht nur durch ihre exzellente Empfindlichkeit aus, sondern leider auch durch einen sehr hohen Preis. Es sind häufig Angebote, z. B. bei Ebay, AliExpress usw., zu finden. Eine kurze Recherche dazu lohnt sich. Die Diode eignet sich mit einer aktiven Fläche von 50qmm für Messungen mit einer direkten Einstrahlung der Quelle, auch ohne Messkugel. Alerdings ist die Diode bereits bei Leistungen unter 1mW übersättigt und übersteuert aus diesem Grund bei der Messung konventioneller Laserpointer. Die Verwendung der OSD-50 ist deshalb und aufgrund ihres hohen Preises nur für professionelle/ semiprofessionelle Laboreinsätze zu empfehlen.

Langkah 3: Anfertigen Der Hardware

Perangkat keras Anfertigen Der
Perangkat keras Anfertigen Der

Zum Anfertigen der Platine sollte zuerst mithilfe des Stencils Lötpaste auf die vorgesehenen Pads aufgetragen werden. Als Lötpaste empfehlen wir eine bleifreie Variante, z. B. SMD Solderpaste von Chipquik, zu verwenden, da ansonsten das Einatmen des entstehenden Rauchs beim Erhitzen gesundheitsschädlich wirken kann. Danach sind die einzelnen Bauteile an den richtigen Stellen zu platzieren. Dabei sollte bei den kleinen Bauteilen begonnen werden, um das Bestücken einfacher zu gestalten. Zuletzt muss die bestückte Platine erhitzt werden, damit die Lötpaste die Bauteile an die Platine binden kann. Kleine Ungenauigkeiten in der Platzierung der Bauteile sind akzeptabel, beim Aufschmelzen der Lötpaste "zieht" die rich

Die Lötung erfolgt idealerweise mit einem professionellen Lötofen z. B. einem Dampffphasen Lötofen. Anschaffung eines solchen Gerts sehr teuer ist empfiehlt sich beispielsweise eine kostengünstigere Lösung in Form eines Reflow-Kits, das von PCB Pool angeboten wird.

(Hinweis: In unserer Vorgängerversion der Verstärkerplatine bot sich auch die improvisierte Variante der Erhitzung der Platine mit der Verwendung einer einfachen Herdplatte, zB einer Camping Herdplatte, dan. eine kleinere Platine handelte, war der Lötvorgang leichter zu beobachten und zu kontrollieren. Deshalb ist diese Variante für Sauron Plus nicht zu empfehlen.)

Danach folgt das Anbringen der Bauteile mit Steckverbindungen. Die einzelnen Steckverbinder sollten durch Lötungen mit den Kontakten verbunden werden (z. B. mit solch einem Lötkolben und Lötdraht).

Wie die Fertigung di einzelnen Schritten aussieht, wird im Video vorgestellt

berschüssige Lötpaste führt bei SMD Bauteilen dengan AS89010 dengan einem Beinchenabstand von 0,635 mm sesuai dengan Kurzschlüssen nach dem Löten. Normalerweise lässt sich durch kurzes Erhitzen mit dem Lötkolben mit Hohlkehle der überschüssigen Zinn entfernen.

Anda dapat menggunakan Photodiode mit einem Koaxialkabel verbunden wird, kann im Instructable Sauron nachgelesen werden.

Langkah 4: Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi LabVIEW

Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi LabVIEW
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi LabVIEW
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi LabVIEW
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi LabVIEW
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi LabVIEW
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi LabVIEW
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi LabVIEW
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi LabVIEW

Für die grafische Darstellung der Messergebnisse lässt sich die Entwicklungsumgebung LabVIEW™ verwenden. LabVIEW™ ist für Studenten und Schüler kostengünstig zu erwerben. siehe hier

(Hinweis: Das UserInterface für Sauron benötigt die Versi NI LabVIEW™2016)

Komunikasi lebih lanjut dengan Arduino adalah Antarmuka Modul LabVIEW untuk Arduino über den JKI VI Package Manager zu installieren. Falls dieser noch nicht installiert ist, ist der Package Manager hier zum Unduh erhältlich. Achte darauf, dass der NI VISA Treiber penginstal. Dies ist der Treiber, der für die Komunikasi mit dem Arduino zuständig ist.

Lade die.zip Datei LabVIEWPlus.zip herunter. Die darin enthaltene Datei SPLUS_RACK_4_SHUTTER.vi beinhaltet das mit LabVIEW™ entwickelte kebajikan Instrumen SauronPlus VI. Die VI stellt die Basisfunktionalitäten für die Komunikasi dan Konfigurasi von Sauron Plus zur Verfügung.

(Hinweis: Die Datei muss unbedingt in dem heruntergeladenen Ordner mit allen übrigen Dateien verbleiben, da die VI auch auf diese zugreifen muss.)

Langkah 5: Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi Arduino

Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi Arduino
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi Arduino
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi Arduino
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi Arduino
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi Arduino
Komunikasi Zwischen Arduino Und LabVIEW - Konfigurasi Arduino

Der Arduino muss mittels USB dan PC den angeschlossen werden. Dieser Controller kontrolliert die Messdatenaufnahme.

Für die Programmierung mit dem Arduino kann die frei verfügbare Open Source IDE Arduino Software verwendet werden. Pertama-tama, dass für die Komunikasi dengan Arduino der richtige COM - Port (USB) ausgewählt wird.

Die Datei FirmwareForBackplain.zip beinhaltet die zum Betrieb von Sauron Plus mit dem Arduino Nano notwendige Firmware. Diese Firmware erlaubt die Konfigurasi dan das Auslesen der Messdaten mit der ebenfalls bereitgestellten LabVIEW™-VI. Die Datei Sauron.ino wird auf den Controller geladen, der die Messdatenaufnahme kontrolliert.

Der Arduino muss dann, z. B. mithilfe von female-female Jumper Kabeln, mit dem Arduino auf der Platine verbunden werden. Dazu ist das Pinout (siehe oben) des Arduino hilfreich. Der Ausschnitt der Platine (s.o.) zeigt welche Pin miteinander verbunden werden. Dabei werden die Pins SDA, SCL dan GND mit dem jeweils gleichnamigen verbunden. V+ muss mit dem 5V-Ausgang des Arduino Nano dan INT_RDY mit dem INT0 Pin verbunden werden.

Die Firmware untuk Arduino Nano, dengan nama Platine von Sauron Plus, terhubung ke Datei ArduinoNANO_SPLUS.zip zur Verfügung gestellt. Die Datei SauronPLUS.ino wird jetzt auf den Platinencontroller gespielt.

Langkah 6: Antarmuka Anwendung Benutzer

Antarmuka Anwendung Benutzer
Antarmuka Anwendung Benutzer

Nach dem Laden der Sauron PLUS VI lassen sich hier über das Benutzerinterface die Betriebsparameter einstellen.

Diese VI ist auch für die Nutzung mit dem Photo Rack geeignet. Aus diesem Grund stellt die VI ein Userinterface zur Bedienung von vier Kanälen gleichzeitig bereit.

  • Schalter oben: schalten jeweiligen Messkanal für die Messung ein
  • CH 1- CH4: schaltet den jeweiligen Messkanal für die Einstellungen mittels der runden Bedienelemente ein oder aus
  • Kekuasaan: zeigt die auf die jeweilige Photodiode einfallende Leistung in W (Voraussetzung: Die Empfindlichkeit der Photodiode ist bekannt und in der Sauron VI mittels eines Kalibrierfiles hinterlegt.)
  • Panjang gelombang: Die Wellenlänge der Lichtquelle muss bekannt sein und eingetragen werden
  • COM: Auswahl des COM Ports zur Verbindung mit dem Arduino (kann je nach Mikrokontroler verschieden sein).
  • Tingkat dB: Auswahl der Dämpfung dalam dB
  • Waktu integrasi dalam ms: Auswahl der Integrationszeit des Messsingals dalam ms
  • Kalibrasi File: Jeder Messkanal benötigt ein eigenes File, welches die Kalibrierung der jeweiligen Diode beinhaltet. Die Files sind für die zwei verschiedenen Diodentypen in der Firmware des Systems verarbeitet dan liegen ebenfalls in dem Ordner indem sich die VI befindet.

(Hinweis: Die Datei None pd kann ausgewählt werden um eine 1:1 Messung ohne Kalibrierung durchzuführen.)

  • Detektor: zeigt dann den ausgewählten Messkopf dan
  • Messung: startet die Messung
  • Live Mode: startet kontinuierliche Messung

(Hinweis: Diese Nutzeroberfläche ist nur ein Beispiel, wie Sauron Plus angewendet werden kann. Es können auch andere Nutzerinterfaces angepasst werden, um Sauron Plus je nach Bedürfnis zu verwenden.)

Direkomendasikan: